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Abstract

This paper presents a numerical analysis of the flow and heat transfer characteristics of forced convection in a micropolar fluid flowing
along a vertical slender hollow circular cylinder with wall conduction and buoyancy effects. The non-linear formulation governing equa-
tions and their associated boundary conditions are solved using the cubic spline collocation method and the finite difference scheme with
a local non-similar transformation. This study investigates the effects of the conjugate heat transfer parameter, the Richardson number,
the micropolar parameter, and the Prandtl number on the flow and the thermal fields. The effect of wall conduction on the thermal and
the flow fields are found to be more pronounced in a system with a greater buoyancy effect or Prandtl number but is less sensitive with a
greater micropolar material parameter. Compared to the case of pure forced convection, buoyancy effect is found to result in a lower
interfacial temperature but higher the local heat transfer rate and the skin friction factor. Finally, compared to Newtonian fluid, an
increase in the interfacial temperature, a reduction in the skin friction factor, and a reduction in the local heat transfer rate are identified
in the current micropolar fluid case.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Buoyancy effects become fundamentally important in
forced convection when the fluid velocity is relatively low
or when the temperature difference between the wall and
the free stream is large. Under these conditions, the density
gradient generated by the temperature difference responsi-
ble for the buoyancy convection effects must be taken into
consideration. It is also important to analyze the case of
mixed convection, when the order of magnitude of the
forced convection and the free convection are equal. Many
practical applications of mixed convection exist, including
in the fuel element of a nuclear reactor, in the heaters
and coolers of mechanical or chemical devices, in the lubri-
cation of machine parts, etc.
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The influence of thermal buoyancy effects on forced con-
vection has been studied extensively by many investigators.
Lloyd and Sparrow [1] used a local similarity method to
solve the mixed convection flow on a vertical surface and
showed that the numerical solutions ranged from pure
forced convection to mixed convection. Chen and Mucoglu
[2] analyzed the buoyancy and transverse curvature effects
on forced convection of Newtonian fluid flow along an iso-
thermal vertical cylinder using the local non-similarity
method. The same problem for a uniform surface heat flux
case was conducted by Mucoglu and Chen [3]. The effect of
air property variations in the boundary layer flow along a
moving cylinder was investigated by Choi [4]. Lee et al. [5]
studied the problem of mixed convection along a vertical
cylinder with uniform surface heat flux for the entire mixed
convection regime, ranging from pure forced convection to
pure free convection by employing the buoyancy and
curvature parameters. The unsteady forced convection
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Nomenclature

B dimensionless parameter of microinertia density
Cf skin friction coefficient
F reduced stream function
g gravitational acceleration
G dimensionless microrotation
Gr Grashof number
j microinertia density
K thermal conductivity
L length of the cylinder
N angular velocity of micropolar fluid
Nux local Nusselt number
p conjugate heat transfer parameter
Pr Prandtl number
r coordinate in the radius direction
ri, ro inner and outer radii of the hollow cylinder
Re Reynolds number
Rex local Reynolds number
Ri Richardson number
T temperature
T0 temperature of the inside surface of the cylinder
u,v velocity components in x and r directions,

respectively
x coordinate along the axis

Greek symbols

a thermal diffusivity
b thermal expansion coefficient

c spin-gradient viscosity
D dimensionless parameter of vortex viscosity
f dimensionless streamwise coordinate
g pseudo-similarity variable
h dimensionless temperature
j vortex viscosity
k dimensionless parameter of spin-gradient

viscosity
l dynamic viscosity
m kinematic viscosity
n dimensionless streamwise coordinate
q density of micropolar fluid
r transverse curvature parameter
s shear stress
u stream function

Superscripts

n false time level of n
n + 1 false time level of n + 1
0 derivate with respect to g

Subscripts

f condition in the fluid
s condition in the wall of cylinder
w condition at solid–liquid interface
1 condition in surrounding medium
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laminar boundary layer flow over a longitudinal cylinder
has been investigated by Eswara and Nath [6]. Their exper-
imental results were found to be consistent with the numer-
ical results of Lloyd and Sparrow [1] and other previous
studies.

Recently, Na and Pop [7] considered a thin longitudinal
circular cylinder moving in a flowing stream, and obtained
the velocity and temperature distributions by using the
Keller-box method. The studies of the transient unsteady
process of cooling down and stratifying an initially homo-
geneous fluid by in a vertical circular cylinder were con-
ducted by Lin and Armfield [8]. The effects of localized
cooling/heating and injection/suction on the mixed convec-
tion flow on a thin vertical cylinder were analyzed by
Kumari and Nath [9].

The investigations cited above all considered the fluid to
be Newtonian. However, in practice, many of the fluids
involved in technical processes and engineering applica-
tions exhibit non-Newtonian behavior. Consequently, the
analysis of mixed convection must be extended to the case
of non-Newtonian fluids. The theory of simple microfluid
was originally developed by Eringen [10,11] and has now
been applied in the investigation of various fluids. This
theory takes the microscopic effects arising from the local
structure and micromotions of the fluid elements into
account and provides the basis for a mathematical model
for non-Newtonian fluids which can be used to analyze
the behavior of exotic lubricants, polymers, liquid crystals,
animal bloods, and colloidal or suspension solutions, etc.
The theory of micropolar fluids has been extensively
researched and proved by a number of investigators [12–
14]. Lately, Gorla and Ameri [15] studied the mixed
convection boundary layer flow on a continuous moving
cylinder by using the theory of micropolar fluids formu-
lated by Eringen. Gorla et al. [16] applied the expansion
method to conduct the mixed convection heat transfer
characteristics of the micropolar fluid flow along an iso-
thermal vertical plate.

More recently, Mohammadien et al. [17] investigated the
heat transfer characteristics of the mixed convection flow
of micropolar fluids for the case of a moving heated hori-
zontal plate. Siddheshwar and Krishna [18] applied the
Fourier series expansion method to conduct the linear
and non-linear analyses of convection in a micropolar fluid
occupying a porous medium. The mixed convection flow of
a continuously moving plate in a moving free stream was
investigated by Bhargava et al. [19]. The velocity, micro-
rotation and temperature distribution functions are com-
puted numerically. Meanwhile, in their studies [13–19],
the thermal boundary condition at the solid surface was
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Fig. 1. Physical model and coordinate system.

4934 C.-L. Chang / International Journal of Heat and Mass Transfer 49 (2006) 4932–4942
assumed either prescribed wall temperature or prescribed
heat flux, and thus the interaction between the solid surface
and its adjacent boundary layer was neglected.

However, in many practical applications, such as heat
exchangers, heaters, nuclear reactors, pipe insulation sys-
tems, etc., the effect of conduction within the solid wall is
significant and must be taken into account. Hence, the
analysis of this type of heat transfer mechanisms possesses
necessary the coupling of the conduction in the solid body
and the convection in the fluid surrounding it. The conju-
gate heat transfer problem, in which the coupled heat
transfer processes between the solid body (conduction
mechanisms) and the fluid flow (convection mechanisms)
are considered simultaneously, has been investigated by
several researchers for the case of a Newtonian fluid.

For example, two-dimensional conjugate heat transfer
problems of free convection from a vertical flat plate with
a uniform temperature or a uniform heat flux at the outside
surface of the plate was studied, numerically and experi-
mentally, by Miyamoto et al. [20]. The conjugate problem
for a vertical plate fin with various heat transfer coefficients
under forced convection has been investigated by Sparrow
and Chyu [21]. They assumed the heat conduction in the fin
to be one-dimensional. Timma and Padet [22] employed
the extension of Blasius method to investigate the similar
problem with a simplification of the axial conduction term
in the energy equation of the plate was neglected. Pozzi and
Lupo [23] obtained the perturbation solutions for the cou-
pled problem of natural convection along, and conduction
within, a heated flat plate. Char et al. [24] employed the
cubic spline collocation numerical method to analyze the
conjugate heat transfer in the laminar boundary layer on
a continuous, moving plate. The effect of wall conduction
on the heat transfer characteristics of the natural convec-
tion over a vertical slender hollow circular cylinder was
investigated by Na [25].

Recently, the conjugate free convection from a slightly
inclined flat plate in a porous medium was investigated
both analytically and numerically by Vaszi et al. [26].
Finally, Jilani et al. [27] analyzed a heat generating vertical
cylinder with two-dimensional heat conduction models and
coupled a laminar forced convection flow in the fluid sur-
rounding it. They obtained the numerical solutions by
using the finite difference scheme.

In the previous studies, the investigators dealing with
conjugate heat transfer problems [20–27] focused on New-
tonian fluids flowing along a solid surface. Although the
conjugate mixed convection flow of a micropolar fluid
along a slender cylinder is of great practical importance
in many industrial and theoretical applications, a review
of the literature reveals that this problem has yet to be
reported. Accordingly, the intention of the present study
is to address this perceived lack in the literature. For sim-
plicity, this study assumed the case of a vertical slender hol-
low cylinder such that the heat conduction within the wall
is one-dimensional. The cubic spline collocation method
and a finite difference approximation scheme are used to
solve the conjugate heat transfer problem. Variation in
the fluid–solid interfacial temperature distribution, skin
friction factor and the local heat transfer rate are presented
to highlight the influence of the wall conduction, buoyancy,
and micropolar material parameter. Moreover, the current
results are compared with the previous numerical results
for the conjugate mixed convection flow of Newtonian flu-
ids along a vertical slender hollow circular cylinder, and are
found to be in good agreement.

2. Mathematical formulation

This study considers the case of a micropolar fluid flow
past a vertical slender hollow circular cylinder of length L
and outer radius ro (L� ro). The physical model and coor-
dinate system are shown in Fig. 1. The gravitational
acceleration, g, acts in the downward direction. The temper-
ature and velocity of the micropolar fluid at a distance
remote from the cylinder are given by T1 and U1, respec-
tively. The temperature of the inside surface of the cylinder
is maintained at a constant temperature of T0, where
T0 > T1. Other than the density variation, the remaining
fluid properties are assumed to be constant. The tempera-
ture difference between the body surface and the surround-
ing micropolar fluid generates a buoyancy force, which
results in an upward convective flow. The viscous dissipa-
tion is considered to be negligible.

By employing laminar boundary layer flow assumptions
and the Boussinesq approximation, the governing equa-
tions for the micropolar fluid can be written as

For continuity:

oðruÞ
ox
þ oðrvÞ

or
¼ 0: ð1Þ

For momentum:

u
ou
ox
þ v

ou
or
¼ mþ j

q

� �
1

r
o

or
r
ou
or

� �
þ j

q
N
r
þ oN

or

� �
þ gbðT � T1Þ: ð2Þ
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For angular momentum:

u
oN
ox
þ v

oN
or
¼ c

jq
1

r
o

or
r
oN
or

� �
� N

r2

� �
� j

jq
ou
or
þ 2N

� �
:

ð3Þ

For energy:

u
oT
ox
þ v

oT
or
¼ a

1

r
o

or
r
oT
or

� �
: ð4Þ

In the equations above, u and v are the velocity compo-
nents along the x and r directions, respectively; q, m, a and
b are the density, kinematic viscosity, thermal diffusivity
and thermal expansion coefficient of the fluid, respec-
tively, and j, j, and c are the vortex viscosity, microinertia
density, and spin-gradient viscosity of the fluid, respec-
tively. Finally, T is the fluid temperature, and N is the
component of microrotation whose direction of rotation
lies in the (x�r) plane.

The boundary conditions are given by the following:

r ¼ r0 : u ¼ 0; v ¼ 0; N ¼ � 1

2

ou
or
; T ¼ T wðxÞ; ð5aÞ

r!1 : u ¼ U1; N ¼ 0; T ¼ T1; ð5bÞ

where subscripts w and 1 refer to the wall and the
boundary layer edge, respectively. In addition, Tw(x) is
the outer surface temperature of the cylinder, which is
not known a priori. The boundary condition given in
Eq. (5a) for N at the outer surface of the cylinder, i.e.
r = ro, indicates that the microrotation is equal to one
half of the fluid vorticity at the boundary (Ahmadi [13]
and Jena and Mathur [14]).

One of objective of the current study is to predict the
outer surface temperature of the cylinder, Tw(x). Therefore,
an additional governing equation is required for the slender
hollow cylinder based on the simplification that the wall of
cylinder steady transfers its heat to the surrounding micro-
polar fluid. Since, the outer radius of the hollow cylinder,
ro, is small compared to its length, L, the axial conduction
term in the heat conduction equation of the cylinder can be
omitted [22,23,25]. The governing equation for the temper-
ature distribution within the slender hollow circular cylin-
der is given by

1

r
o

or
r
oT s

or

� �
¼ 0; 0 6 x 6 L; ri < r 6 ro: ð6Þ

The boundary conditions for the wall of cylinder are
given by

At r ¼ ri; T s ¼ T 0; ð7aÞ
At the interface ðr ¼ roÞ : T s ¼ T ðx; roÞ;

� Ks

oT s

or
¼ �K f

oT ðx; roÞ
or

; ð7bÞ

where Ks and Kf are the thermal conductivity of the cylin-
der and the fluid, respectively. The boundary conditions
given in Eq. (7b) state the physical requirements that the
temperature and heat fluxes of the cylinder and the micro-
polar fluid must be continuous across the solid–fluid inter-
face. From Eqs. (6) and (7b), the temperature distribution
Tw at the interface is derived as:

T wðxÞ ¼ T ðx; roÞ ¼ ro

K f

Ks

ln
ro

ri

� �
oT ðx; roÞ

or
þ T 0: ð8Þ

To facilitate the solution of this problem, pseudo-simi-
larity variables f and g are introduced with the reduced
stream function F(f,g), the dimensionless microrotation
G(f,g), and the dimensionless temperature h(f,g), i.e.

f ¼ x
ro
; g ¼ 1

2x Re1=2
x

r2�r2
o

ro

� �
; u ¼ romRe1=2

x F ðf; gÞ;

N ¼ roU2
1

mr Re�1=2
x Gðf; gÞ; h ¼ T�T1

T 0�T1
;

ð9Þ

where Rex is the local Reynolds number which is defined as

Rex ¼
U1x

m
: ð10Þ

The stream function, u, satisfies the continuity equation
given in Eq. (1) automatically with

u ¼ 1

r
ou
or
; v ¼ � 1

r
ou
ox
: ð11Þ

Substituting Eq. (9) into the governing momentum,
angular momentum, and energy equations, respectively,
yields

ð1þ DÞ½ð1þ rgÞF 00�0 þ 1

2
FF 00 þ DG0 þ Rifh

¼ f F 0
oF 0

of
� F 00

oF
of

� �
; ð12Þ

kð1þ rgÞG00 þ 1

2
FG0 þ 1

2
F 0G� DB

2
r2G� 1

4

r
1þ rg

� �
FG

þ 1

4

r
1þ rg

� �
gF 0G� DB

4
r2ð1þ rgÞF 00

¼ f
1

2

r
1þ rg

� �
G

oF
of
þ F 0

oG
of
� G0

oF
of

� �
; ð13Þ

1

Pr
ð1þ rgÞh00 þ 1

Pr
rh0 þ 1

2
F h0 ¼ f F 0

oh
of
� h0

oF
of

� �
: ð14Þ

In the equations above, the primes indicate partial differ-
entiation with respect to g alone and Pr = m/a is the Prandtl
number. Furthermore, the dimensionless parameters D, B,
and k characterize the vortex viscosity, the microinertia
density, and the spin-gradient viscosity, respectively, and
are defined as

D ¼ j
qm
; B ¼ r2

o

j
; k ¼ c

jqm
: ð15Þ

In addition, Ri and r are the Richardson number and
transverse curvature parameter, respectively, which are
defined as
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Ri ¼ Gr

Re2
; r ¼ 2

f
Re

� �1=2

; ð16Þ

where Re and Gr are the Reynolds number and Grashof
number, respectively, which are defined as
Re ¼ U1ro

m
; Gr ¼ gbðT 0 � T1Þr3

o

m2
: ð17Þ

Furthermore, Ri is the Richardson number and it is a
measure of the relative importance of the buoyancy effect
with respect to the forced convection. Therefore, for mixed
convection flow, 0 < Ri <1; for pure free convection flow,
U1 = 0, Re = 0 and hence Ri =1; and for pure forced
convection flow, the buoyancy is zero, i.e., Ri = 0.

Following transformation, the corresponding boundary
conditions given in Eqs. (5) and (8) become

At g = 0:

F 0ðf; 0Þ ¼ 0; F ðf; 0Þ ¼ �2f
oF
of

����
g¼0

;

Gðf; 0Þ ¼ � 1

2
F 00ðf; 0Þ; pf�1=2h0ðf; 0Þ ¼ hðf; 0Þ � 1: ð18aÞ

As g ?1:

F 0ðf;1Þ ¼ 1; Gðf;1Þ ¼ hðf;1Þ ¼ 0; ð18bÞ

where p ¼ K f

Ks
ln ro

ri

� �
Re1=2 is the conjugate heat transfer

parameter. It should be noticed that for the limiting case
of p = 0, the thermal boundary condition in Eq. (18a) on
the wall becomes isothermal. Intuitively, if the heat con-
ductivity of the hollow cylinder is very large, its tempera-
ture can be expected to be approximately uniform at T0.
Hence, the magnitude of p determines the importance of
the wall heat conduction effect.

For Newtonian fluid flow (D = 0), Eqs. (12)–(14) and
(18) for the case of Ri =1 (pure free convection) govern-
ing the micropolar fluid flow reduce to those of Na [25] in
his study of the conjugate heat transfer characteristics of
Newtonian fluid flow along a vertical slender hollow circu-
lar cylinder. Furthermore, for the case of p = 0 (isother-
mal), these equations simplify to those of Chen and
Mucoglu [2], who studied the mixed convection character-
istics of Newtonian fluid flow. In these cases, Eq. (13) has
no significance and can be omitted.

To simplify the analysis of problem, another pseudo
variable n is introduced as following:

n ¼ f
1þ f

: ð19Þ

Substituting the Eq. (19) into the Eqs. (12)–(14), yields
ð1þ DÞð1þ rgÞF 000 þ ð1þ DÞrF 00 þ 1

2
FF 00 þ DG0

þ Ri
n

1� n

� �
h ¼ nð1� nÞ F 0

oF 0

on
� F 00

oF
on

� �
; ð20Þ
kð1þ rgÞG00 þ 1

2
FG0 þ 1

2
F 0G� DB

2
r2G� 1

4

r
1þ rg

� �
FG

þ 1

4

r
1þ rg

� �
gF 0G� DB

4
r2ð1þ rgÞF 00

¼ nð1� nÞ 1

2

r
1þ rg

� �
G

oF
on
þ F 0

oG
on
� G0

oF
on

� �
; ð21Þ

1

Pr
ð1þ rgÞh00 þ 1

Pr
rh0 þ 1

2
F h0 ¼ nð1� nÞ F 0

oh
on
� h0

oF
on

� �
:

ð22Þ
Following transformation, the corresponding boundary

conditions given in Eqs. (18a) and (18b) can be trans-
formed to following:

At g = 0:

F 0ðn; 0Þ ¼ 0; F ðn; 0Þ ¼ �2nð1� nÞoF
on

����
g¼0

;

Gðn; 0Þ ¼ � 1

2
F 00ðn; 0Þ; p

n
1� n

� ��1=2

h0ðn; 0Þ ¼ hðn; 0Þ � 1:

ð23aÞ

As g ?1:

F 0ðn;1Þ ¼ 1; Gðn;1Þ ¼ hðn;1Þ ¼ 0: ð23bÞ
In practically applications, the physical quantities of

interest include the dimensionless interfacial temperature
distribution, hw, the skin friction coefficient, Cf and the
local Nusselt number, Nux. These quantities are derived
as follows.

From the definition of the dimensionless wall tempera-
ture, it can be shown that

hw ¼ hðn; 0Þ ¼ T w � T1
T 0 � T1

: ð24Þ

The skin friction coefficient is defined as Cf ¼ 2sw=qU 2
1,

and is derived from

CfRe1=2
x ¼ 2 1þ D

2

� �
F 00ðn; 0Þ; ð25Þ

where sw ¼ ½ðqmþ jÞou=or þ jN �r¼ro
is the wall shear

stress. Finally, from Fourier’s law qw ¼ �K foT =orjr¼ro

and the local Nusselt number Nux = qwx/Kf(T0 � T1), it
can be shown that the dimensionless heat transfer rate is
given by

Nux

Re1=2
x

¼ �h0ðn; 0Þ: ð26Þ
3. Numerical method

Due to the coupled nature of the current system, the sys-
tem of non-linear equations given in Eqs. (20)–(22) and the
associated boundary conditions in Eq. (23) must be solved
simultaneously. The solution of the system of steady
equations was obtained in previous studies using a
pseudo-transient formulation approach in which a false
transient term was introduced into each equation [24,28].
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However, the present study solves the coupled non-linear
partial differential equations using the cubic spline colloca-
tion method [28–31] together with a finite difference
approximation.

Eqs. (20)–(22) using the false transient technique in dis-
cretized form are given by

unþ1
i;j � un

i;j

Ds
¼ ð1þDÞð1þrigjÞLnþ1

ui;j
þ
�
ð1þDÞri

þ1

2
F n

i;jþ nið1� niÞ
F n

i;j� F n
i�1;j

Dni

�
lnþ1

ui;j
þDln

Gi;j

þRi
ni

1� ni

� �
hnþ1

i;j � nið1� niÞun
i;j

un
i;j� un

i�1;j

Dni
; ð27Þ

Gnþ1
i;j �Gn

i;j

Ds
¼ kð1þrigjÞLnþ1

Gi;j
þ 1

2
F n

i;jþ nið1� niÞ
F n

i;j� F n
i�1;j

Dni

� �
lnþ1

Gi;j

þ 1

2
unþ1

i;j �
DB
2

r2
i �

1

4

ri

1þrigj

 !
F nþ1

i;j þ
1

4

ri

1þrigj

 !
gju

nþ1
i;j

"

�1

2
nið1� niÞ

ri

1þrigj

 !
F n

i;j� F n
i�1;j

Dni

#
Gn

i;j

�DB

4
ð1þrigjÞr2

i lnþ1
ui;j
�nið1� niÞunþ1

i;j

Gn
i;j�Gn

i�1;j

Dni
; ð28Þ

hnþ1
i;j � hn

i;j

Ds
¼ 1

Pr
ð1þrigjÞLnþ1

hi;j
þ 1

Pr
riþ nið1� niÞ

F n
i;j� F n

i�1;j

Dni
þ1

2
F n

i;j

� �
lnþ1
hi;j

� nið1� niÞunþ1
i;j

hn
i;j� hn

i�1;j

Dni
; ð29Þ

where

lu ¼ ou
og ; Lu ¼ o2u

og2 ;

lG ¼ oG
og ; LG ¼ o2G

og2 ;

lh ¼ oh
og ; Lh ¼ o2h

og2 ;

Dni ¼ ni � ni�1;

ð30Þ

In Eqs. (27)–(29), Ds = sn + 1 � sn represents the false time
step, the subscript u denotes for oF/og, and the superscript
n denotes the iteration order.

After some rearrangement, Eqs. (27)–(29) can be
expressed in the following spline approximation form:

/nþ1
i;j ¼ Qi;j þ Ri;jl

nþ1
/i;j
þ Si;jLnþ1

/i;j
; ð31Þ
Table 1
Coefficients of Eq. (31)

/ Q R

u Ds Dln
Gi;j
þ Ri

ni

1� ni
hnþ1

i;j � nið1� niÞun
i;j

un
i;j � un

i�1;j

Dni

� �
þ un

i;j Ds

G Ds
1

2
unþ1

i;j �
DB
2

r2
i �

1

4

ri

1þ rigj

 !
F nþ1

i;j þ
1

4

ri

1þ rigj

 !
gju

nþ1
i;j

"(

� 1

2
nið1� niÞ

ri

1þ rigj

 !
F n

i;j � F n
i�1;j

Dni

#
Gn

i;j �
DB

4
ð1þ rigjÞr2

i lnþ1
ui;j

�nið1� niÞunþ1
i;j

Gn
i;j � Gn

i�1;j

Dni

)
þ Gn

i;j

Ds

h Dsnið1� niÞunþ1
i;j

hn
i;j � hn

i�1;j

Dni
þ hn

i;j
Ds
where / represents the functions u, G, and h. The quantities
Qi,j, Ri,j, and Si,j, are known coefficients, which are calcu-
lated at previous time steps (Table 1).

In the present analysis, the cubic spline collocation
method is used to generate an algorithm resulting in a sin-
gle tridiagonal system containing either the function values
at the grid points, the first derivatives, or the second deriv-
atives only. Using the cubic spline relations described by
Rubin and Khosla [29,30], Eq. (31) at the n + 1th iteration
can be written in the following tridiagonal form:

ai;j/
nþ1
i;j�1 þ bi;j/

nþ1
i;j þ ci;j/

nþ1
i;jþ1 ¼ di;j; ð32Þ

where / represents the function (u,G and h) and its first
and second order derivatives. Therefore, Eq. (32) is readily
solved by the Thomas algorithm.

The present computational procedure commences by
solving the energy equation, which provides the tempera-
ture field necessary for the solution of the reduced stream
function equation. Solution of the transformed angular
momentum equation for G then completes the procedure.
This computation cycle is repeated until convergence is
obtained. The criterion applied when assessing the conver-
gence of the solutions is that the maximum relative change
in all of the dependent variables should satisfy

j/nþ1
i;j � /n

i;jjmax

j/n
i;jjmax

< 5� 10�7: ð33Þ

4. Results and discussion

The aim of this study was to investigate the flow and
heat transfer characteristics for the forced convection of a
micropolar fluid flow along a vertical slender circular hol-
low cylinder with wall conduction and buoyancy effects.
Hence, the numerical computations were performed with
B = 1 � 105, k = 5.0 and Re = 250. The remaining param-
eters were specified as follows: micropolar parameter
D = 0–12.0; Prandtl number 0.73–30.0; and Richardson
S

ð1þ DÞri þ
1

2
F n

i;j þ nið1� niÞ
F n

i;j � F n
i�1;j

Dni

� �
Ds(1 + D)(1 + rigj)

1

2
F n

i;j þ nið1� niÞ
F n

i;j � F n
i�1;j

Dni

� �
Dsk(1 + rigj)

1

Pr
ri þ

1

2
F n

i;j þ nið1� niÞ
F n

i;j � F n
i�1;j

Dni

� �
Ds
Pr
ð1þ rigjÞ



0.93

1.00
p = 0.0 ( isothermal cylinder )

Δ = 12.0
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number Ri = 0.0–20.0. The conjugate heat transfer param-
eter, p, is ranged 0.0–0.75 to conform to the practical cases.
For example, the fluid (for water: Kf = 0.628 W/m K) flows
along a slender stainless steel tubes with ro = 0.03 m,
ri = 0.02 m and Ks = 15 W/m K, we can find the conjugate
heat transfer parameter p = 0.27.

To assess the accuracy of the cubic spline collocation
method, the present numerical results were compared with
the published data [2] resulting to the mixed convection of
a Newtonian fluid flow along a vertical isothermal (p = 0.0)
cylinder with D = B = k = 0, and Pr = 0.7. For different
values of n, the current results for the dimensionless
liquid–solid interfacial heat transfer rate, �h(n, 0), and
the skin friction factor, f00(n, 0), are in a good agreement
with those of [2], as shown in Table 2.

The variation of the dimensionless interfacial tempera-
ture distributions as a function of n in the boundary layer
of the micropolar fluid are shown in Fig. 2 for four differ-
ent values of p with Pr = 10.0, D = 1.0 and Ri = 2.0. The
solution of the isothermal case (p = 0), the wall tempera-
ture is uniform at T0 (hw = 1), is represented by a horizon-
tal straight line. It can be seen that the temperature of the
fluid on the wall increases monotonically with n for a given
value of p. Comparing with isothermal cylinder (p = 0), an
increase in the conjugate heat transfer parameter, p, causes
a reduction in the interfacial temperature. This is because
an increased value of p corresponds to a lower wall conduc-
Table 2
Comparison of the local wall heat transfer rate with Pr = 0.7, Ri = 0,
p = 0.0 (isothermal) and D = B = k = 0 (Newtonian fluid)

4

ro

mx
U1

� �1=2 Chen and Mucoglu
[2]

Present results

f 00(n, 0) �h(n, 0) f 00(n, 0) �h(n, 0)

0.0 1.3282 0.5854 1.3280 0.5852
1.0 1.9172 0.8669 1.9133 0.8658
2.0 2.3981 1.0968 2.3900 1.0940
3.0 2.8270 1.3021 2.8159 1.2998
4.0 3.2235 1.4921 3.2187 1.4925

0.4 0.5 0.6 0.7
ξ

0.5

0.6

0.7

0.8

0.9

1.0

θw

Pr = 10.0, Δ = 1.0, Ri = 2.0

p = 0.0 ( isothermal cylinder )

0.15

0.35

0.55

0.75

Fig. 2. Variation of interfacial temperature with n at different values of p.
tance Ks and promote a greater surface temperature
variations.

Fig. 3 plots the variation of the dimensionless interfacial
temperature profiles as a function of n, for selected values
of D. As in the case above, the dimensionless interfacial
temperature increases with increasing n. Furthermore, it
is observed that the dimensionless interfacial temperature
is higher for micropolar fluids than for Newtonian fluids
(the limiting case of D = 0). In addition, the higher the
value of D, the greater the dimensionless interfacial
temperature.

Fig. 4 presents the variation of the interfacial tempera-
ture with n for various values of the Ri. It can be seen that
as the value of n increases, the interfacial temperature rises,
i.e. the interfacial temperature increases from the bottom of
the cylinder towards the top of the cylinder. Compared
with the limiting case of Ri = 0 (i.e. pure forced convec-
tion), an increase in the value of Ri gives rise to a reduced
interfacial temperature since a greater value of Ri indicates
a greater buoyancy effect, which increases the convection
cooling effect and hence reduces the wall temperature.
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ξ

0.60
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1.00
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p = 0.0 ( isothermal cylinder )

Ri = 0.0 ( pure forced convection )
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20.0

Fig. 4. Variation of interfacial temperature with n at different values of Ri.
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Fig. 3. Variation of interfacial temperature with n at different values of D.
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Fig. 5. Variation of interfacial temperature with n at different values of Pr.
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Fig. 7. Effect of micropolar material parameter D on skin friction factor.
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Fig. 5 presents the variation of the interfacial tempera-
ture with n for various values of the Prandtl number, Pr.
The results indicate that an increase in the value of Pr give
rise to a reduced interfacial temperature since a greater
value of Pr indicates a higher heat transfer coefficients.

It is shown on Fig. 6 to indicate the influence of the
conjugate heat transfer parameter, p, on the skin friction
factor. The dashed lines and solid lines in the figure indi-
cate the skin friction factor corresponding to the cases of
isothermal cylinder (p = 0) and non-isothermal cylinder
(p > 0), respectively. It can be seen that the local skin fric-
tion factor decreases with an increasing value of p and
increases along the streamwise direction. This is because
the increasing interfacial temperature along the streamwise
direction generates greater buoyancy effects, and hence
increases the skin friction factor.

Fig. 7 illustrates the effect of the micropolar material
parameter, D, on the skin friction factor for Pr = 10.0
and p = 0.0 (dashed lines) and p = 0.25 (solid lines), respec-
tively. It shows that the skin friction factor is lower for
micropolar fluids than for Newtonian fluids (D = 0) since
0.4 0.5 0.6 0.7
ξ

0.45

0.65

0.85

1.05

1.25

1.45

F
''(

ξ,
0)

Pr = 10.0, Δ = 1.0, Ri = 2.0

p = 0.0 (isothermal cylinder )
      0.15
      0.35
      0.55
      0.75

Fig. 6. Effect of conjugate heat transfer parameter p on skin friction
factor.
micropolar fluids offer a greater resistance to the fluid
motion compared to Newtonian fluid. The results also
indicate that the larger the value of D, the lower the skin
friction factor. Moreover, while the greater values of
micropolar material parameter, D, the less sensitivity of
the wall conduction effects influence to the skin friction
factor.

Fig. 8 illustrates the effect of the buoyancy force on the
skin friction factor for Pr = 10.0, D = 1.5 and p = 0
(dashed lines) and 0.35 (solid lines), respectively. It is
observed that the local skin friction factor increases as
the buoyancy effect increases. The reason for this is that
an increase in the buoyancy effect in mixed convection flow
leads to an acceleration of the fluid flow, which increases
the local skin friction factor. Additionally, the higher the
value of the buoyancy effect, the more the sensitivity of
the wall conduction effects influences the skin friction fac-
tor. In the limiting case of Ri = 0, i.e. pure forced convec-
tion with no buoyancy effects, the conjugate heat transfer
parameter, p, is virtually independent of the skin friction
factor because the buoyancy effect generated by the tem-
perature difference is relatively weaker.
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Fig. 8. Effect of Richardson number Ri on skin friction factor.
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Fig. 9. Effect of Prandtl number Pr on skin friction factor.
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Fig. 11. Effect of micropolar material parameter D on heat transfer rate.
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Fig. 9 plots the variation of the skin friction factor along
the streamwise direction for various values of Prandtl num-
ber, Pr. Note that the dashed line corresponds to the case
of an isothermal cylinder (p = 0). It reveals that the local
skin friction factor decreases as Pr increases. Because of
an increase in Pr means the greater density of fluids, and
hence causes a reduction in the buoyancy effect.

Fig. 10 shows the effect of the conjugate heat transfer
parameter, p, on the local heat transfer rate along the
streamwise direction, n. As in the case above, the dashed
line corresponds to an isothermal cylinder (p = 0). It can
be seen that the local heat transfer rate increases as n
increases. Furthermore, the effect of conjugate heat trans-
fer gives rise to a reduction of the local heat transfer rate,
i.e. the greater the value of p, the lower the local heat trans-
fer rate. This trend is consistent with the interfacial temper-
ature distributions presented in Fig. 2.

Fig. 11 plots the local heat transfer rate for different val-
ues of the micropolar material parameter, D. The results
reveal that the local heat transfer rate decreases as the
value of D increases. This trend is not only occurring on
isothermal cylinder (p = 0, the dashed line), but also on
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Fig. 10. Effect of conjugate heat transfer parameter p on heat transfer
rate.
the non-isothermal cylinder (p > 0, the solid lines). This is
due to that greater D increases the thickness of thermal
boundary layer which results in lower the local heat trans-
fer rate. Furthermore, the higher values of micropolar
material parameter D means that the greater resistance in
fluid, thereby leads to the higher wall temperature and
decreases the influence of conjugate heat transfer parame-
ter p.

Fig. 12 illustrates the effect of the buoyancy force on the
local heat transfer rate. It is noted that as the value of the
Ri increases, the local heat transfer rate also increases, both
for the case of an isothermal cylinder (dashed lines) and a
non-isothermal cylinder (solid lines). This is because an
increased buoyancy effect generates a greater buoyancy
force, which increases the fluid velocity, and hence raises
the local heat transfer rate. The effect of the conjugate heat
transfer parameter, p, is more significant at higher values of
Ri, but is less pronounced for pure forced convection
(Ri = 0).

Fig. 13 illustrates the variations of the local heat transfer
rate with n for different values of the Prandtl number, Pr.
As in the case above, the dashed lines indicate an isother-
mal cylinder (p = 0), while the solid lines represent a non-
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Fig. 12. Effect of Richardson number Ri on heat transfer rate.
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Fig. 13. Effect of Prandtl number Pr on heat transfer rate.
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isothermal cylinder. It is observed that higher values of the
Prandtl number, Pr, result in higher local heat transfer
rate. This is because a higher Prandtl number give rise to
a greater heat transfer effect, which in this case, implies a
larger heat transfer rate on the wall. In addition, the effect
of wall conduction on the heat transfer rate is more pro-
nounced when Pr is larger.

5. Conclusions

This study has analyzed the effect of buoyancy and wall
conduction on the forced convection flow of a micropolar
fluid. The non-linear formulation governing equations
and their associated boundary conditions have been
obtained and solved using the non-similarity transform
and the cubic spline collocation method, respectively. The
influences of the conjugate heat transfer parameter, the
Richardson number, the micropolar material parameter,
and the Prandtl number on the solid–liquid interfacial tem-
perature distribution, the skin friction factor, and the local
heat transfer rate have been systematically examined. The
conjugate heat transfer parameter, p, and the Richardson
number, Ri, are identified which are the measure of the
effect of wall conduction and buoyancy, respectively.

Numerical results show that the conjugate heat transfer
parameter has a significant influence on the fluid flow and
heat transfer characteristics. An increase in the conjugate
heat transfer parameter (i.e. a stronger wall conduction
effect) results in a reduction in the solid–liquid interfacial
temperature distribution, the skin friction factor, and the
local heat transfer rate. The effects of the wall conduction
on the thermal and the flow fields are found to be more
pronounced in a system with a greater Prandtl number or
lager buoyancy parameter (i.e. a stronger buoyancy effect).
Furthermore, the skin friction parameter, the local heat
transfer rate, and the interfacial temperature all increase
with increasing streamwise coordinate, n.

An increase in the buoyancy effect reduces the tempera-
ture distribution and increases the skin friction factor and
the local heat transfer rate on the wall. The effects of the
buoyancy force on the thermal and the flow fields are
found to increase the effect of wall conduction. Compared
to the case of pure forced convection, mixed convection
(i.e. a stronger buoyancy effect) is found to result in a lower
interfacial temperature but higher the local heat transfer
rate and the skin friction factor.

Finally, the higher values of micropolar material param-
eter result in lower the skin friction parameter and higher
the interfacial temperature and the local heat transfer rate.
The effects of the micropolar material parameter on the
thermal and the flow fields are found to decrease the effect
of wall conduction. The effect of conjugate heat transfer
parameter, p, on the characteristics of the thermal and
the flow fields is less sensitive in a system with a greater
micropolar material parameter.
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